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Exercise 1

For a random variable X , the expected value of the random variable 3X is

E (3X ) = 3E (X ).

(a) TRUE

(b) FALSE
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Exercise 2

For a random variable X , the expected value of the random variable X 3 is

E (X 3) = E (X )3.

(a) TRUE

(b) FALSE
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Exercise 2

For a random variable X , the expected value of the random variable X 3 is

E (X 3) = E (X )3.

(a) TRUE

(b) FALSE

In general, E (g(X )) 6= g(E (X )). That only works in the special case of
linear functions g(x) = ax + b.
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Exercise 3, part 1

The discrete random variable X has the following probability mass
function :

P(X = 1) = 2/5, P(X = 2) = 2/5, P(X = 3) = 0, P(X = 4) = 1/5.

Find the expectation and variance of X .
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Exercise 3, part 1

(a) E (X ) = 2; var(X ) =
2

5

(b) E (X ) =
2

5
; var(X ) =

6

5

(c) E (X ) = 2; var(X ) =
2

5

(d) E (X ) = 2; var(X ) =
6

5

(e) E (X ) =
2

5
; var(X ) = 2
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Exercise 3 part 1,

(a) E (X ) = 2; var(X ) =
2

5

(b) E (X ) =
2

5
; var(X ) =

6

5

(c) E (X ) = 2; var(X ) =
2

5

(d) E (X ) = 2; var(X ) =
6

5

(e) E (X ) =
2

5
; var(X ) = 2
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Exercise 3, part 1, solution

The expectation is

EX = 1× 2/5 + 2× 2/5 + 4× 1/5 = 2.

The variance is

VarX = (1− 2)2 × 2/5 + (2− 2)2 × 2/5 + (4− 2)2 × 1/5 = 6/5
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Exercise 1, part 2

A discrete random variable X has the following probability mass function:

P(X = 1) = 2/5, P(X = 2) = 2/5, P(X = 3) = 0, P(X = 4) = 1/5.

We measure X three times independently. Find the probability that X = 4
for exactly two of those measurements.
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Exercise 3, part 2

The probability that X = 4 for exactly two of those measurements is

(a)
2

25

(b)
12

125

(c)
12

25

(d)
3

2

(e)
3

5
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Exercise 3, part 2, solution

The number of times you get 4 from three measurements is binomially
distributed with n = 3 and p = P(X = 4) = 1/5. Therefore the probability
of getting 4 exactly twice is(

3
2

)(
1

5

)2(4

5

)
=

12

125
.
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Exercise 4, part 1

A continuous random variable X has probability density function given by

f (x) =

{
2
x2

for 1 ≤ x ≤ 2;

0 otherwise.

1 Find the cumulative distribution function F (x) = P(X ≤ x).

2 Find the value x such that P(X ≤ x) = P(X ≥ x) = 0.5.
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Exercise 4, part 1

The value x such that P(X ≤ x) = P(X ≥ x) = 0.5 is

(a)
4

3

(b)
2

3
(c) −2

(d) 0

(e) −3

2
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Exercise 4, part 1

The value x such that P(X ≤ x) = P(X ≥ x) = 0.5 is

(a)
4

3

(b)
2

3
(c) −2

(d) 0

(e) −3

2
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Exercise 4, part 1, solution

1 Note that the range of possible values for X is 1 ≤ X ≤ 2.

F (x) =

∫ x

−∞
f (u) du =


∫ x
−∞ f (u) du = 0 ; x ≤ 1∫ x
1

2
u2

du = −2/u
∣∣x
1

= −2
x + 2 ; 1 < x < 2∫ x

1 f (u) du =
∫ 2
1

2
u2

du = 1 ; x ≥ 2

2 We need −2/x + 2 = 0.5, so −2/x = −1.5, so x = 2/1.5 = 4/3.
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Exercise 4, part 2

Calculate the expectation of the random variable
X

2
− ln 2.

Recall, X has probability density function given by

f (x) =

{
2
x2

for 1 ≤ x ≤ 2;

0 otherwise.
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Exercise 4, part 2

The expected value E (
X

2
− ln 2) is

(a) ln 2

(b)
2

ln 2
(c) 2

(d) 0

(e) − ln 2

2
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Exercise 4, part 2

The expected value E (
X

2
− ln 2) is

(a) ln 2

(b)
2

ln 2
(c) 2

(d) 0

(e) − ln 2

2
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Exercise 4, part 2, solution
Note that since f (x) = 0 outside of the interval [1, 2],∫ ∞

−∞
xf (x) dx =

∫ 2

1
x

2

x2
.

The expectation of X is

EX =

∫ ∞
−∞

x
2

x2
dx =

∫ 2

1
x

2

x2
dx

=

∫ 2

1

2

x
dx = [2 ln |x |]21 = 2 ln 2− 2 ln 1 = 2 ln 2.

Therefore,

E (
X

2
− ln 2) =

E (X )

2
− ln 2 =

2 ln 2

2
− ln 2 = 0.

Exam 2 Practice April 11, 2015 21 / 41



Exercise 5

Suppose a continuous random variable X has probability density function

f (x) =

{
2e−2x for x > 0;

0 otherwise.

Find E(X).

Exam 2 Practice April 11, 2015 22 / 41



Exercise 5

The expected value E (X ) is

(a)
1

2

(b)
−1

2
(c) 1

(d) 0

(e)
1

2
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Exercise 5

The expected value E (X ) is

(a)
1

2

(b)
−1

2
(c) 1

(d) 0

(e)
1

2
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Exercise 5, solution

E (X ) =

∫ ∞
−∞

2xe−2xdx =

∫ ∞
0

2xe−2xdx

since f (x) = 0 for x ≤ 0. Thus,

E (X ) = lim
b→∞

∫ b

0
2xe−2xdx = lim

b→∞
(−xe−2x − 1

2
e−2x)

∣∣b
0

= lim
b→∞

(−be−2b − 1

2
e−2b +

1

2
) =

1

2
− lim

b→∞
be−2b − 1

2
lim
b→∞

e−2b.

By L’Hopital,

lim
b→∞

be−2b = lim
b→∞

b

e2b

∞
∞= lim

b→∞

1

2e2b
= 0.

Also,

lim
b→∞

e−2b = 0, so E (X ) =
1

2
.
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Exercise 6

What is the solution to the differential equation

dy

dx
= 5(y − 1224234)(y + 3533),

subject to the initial value condition y(6) = −3533?
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Exercise 6

The solution to the differential equation

dy

dx
= 5(y − 1224234)(y + 3533),

subject to the initial value condition y(6) = −3533 is

(a) y(x) = 465376e3533x

(b) y(x) = 3533

(c) y(x) = −3533

(d) y(x) = −3533
6 x

(e) There is no such solution.
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Exercise 6

The solution to the differential equation

dy

dx
= 5(y − 1224234)(y + 3533),

subject to the initial value condition y(6) = 3533 is

(a) y(x) = 465376e3533x

(b) y(x) = 3533

(c) y(x) = −3533

(d) y(x) = −3533
6 x

(e) There is no such solution.

Do not forget about the trivial solutions (the constant functions that make
dy
dx = 0. !! Those are always part of the general solution.
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Exercise 7

Find a 2x2 matrix A such that A transforms an arbitrary vector

(
x
y

)
by

(
x
y

)
A−→
(

y
−x

)
,

namely a reflection across the x = y axis and a reflection across the x-axis.
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Exercise 7

The matrix A=

(a)

(
0 1
1 0

)
(b)

(
−1 0
1 0

)
(c)

(
1 0
0 −1

)
(d)

(
0 1
−1 0

)
(e) There is no such matrix.
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Exercise 7

The matrix A=

(a)

(
0 1
1 0

)
(b)

(
−1 0
1 0

)
(c)

(
1 0
0 −1

)
(d)

(
0 1
−1 0

)
(e) There is no such matrix.
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Exercise 7, solution

Suppose

A =

(
a b
c d

)
.

Thus (
a b
c d

)(
x
y

)
=

(
y
−x

)
.

So
ax + by = y for ALL x , y

and
cx + dy = −x for ALL x , y .

Thus a = 0, b = 1, c = −1, d = 0.
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Exercise 8

The vector

(
1
1

)
is an eigenvector of the matrix

A =

(
1 1
−2 4

)
.

(a) TRUE

(b) FALSE
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Exercise 8, solution

The vector

(
1
1

)
is an eigenvector of the matrix

A =

(
1 1
−2 4

)
.

(a) TRUE

(b) FALSE

We can check (
1 1
−2 4

)(
1
1

)
=

(
2
2

)
= 2

(
1
1

)
,

so

(
1
1

)
is an eigenvector with eigenvalue 2.
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Exercise 9

1 Find the inverse of the matrix (if it exists)(
0 2
−1 1

)
2 Solve the following matrix equation(

0 2
−1 1

)(
x
y

)
=

(
4
2

)
.
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Exercise 9

The solution to the matrix equation is

(a)

(
1
2

)
(b)

(
0
2

)
(c)

(
0
0

)
(d) There are infinitely many solutions.

(e) There is no solution.
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Exercise 9

The solution to the matrix equation is

(a)

(
1
2

)
(b)

(
0
2

)
(c)

(
0
0

)
(d) There are infinitely many solutions.

(e) There is no solution.
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Exercise 9, solution

1 The determinant is 0× 1− 2× (−1) = 2, so the inverse matrix is

1

2

(
1 −2
1 0

)
=

(
1/2 −1
1/2 0

)
.

2 Since the matrix on the left-hand side has an inverse, we multiply by
that inverse to get the solution:(

x
y

)
=

(
0 2
−1 1

)−1(
4
2

)
=

(
1/2 −1
1/2 0

)(
4
2

)
=

(
0
2

)
.

Therefore x = 0 and y = 2.
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Exercise 10

Find values for the constants a, b such that the matrix equation(
0 a
−1 1

)(
x
y

)
=

(
b
2

)
has

1 exactly one solution;

2 infinitely many solutions;

3 no solutions.

(Note: the three cases are separate – you will find a different pair of values
for a, b in each case.)
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Exercise 10, solution

1 To get exactly one solution, we need to choose a such that the
determinant of the matrix on the left-hand side is not zero. Any a not
equal to 0 will do, and any value of b will do. So a ∈ R\{0} and
b ∈ R.

2 To get infinitely many solutions, we need to choose a such that the
determinant of the matrix is zero, and a = 0 does this. We then need
to make sure there is at least one solution which will happen only
when b = 0. So a = 0 and b = 0 is the answer.

3 To get no solutions, we need a = 0 as before, and then any b not
equal to zero will work. So a = 0 and b ∈ R\{0}.
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Also make sure to review

how to solve a differential equation step by step to find the general
solution or the particular solution corresponding to an initial value
constraint (note that the trivial solutions are always part of the
general solution)

what it means by definition for a number to be an eigenvalue and how
to find the eigenvalues of a matrix going step by step straight from
the definition

how to find the set of eigenvectors corresponding to an eigenvalue

Advice: review all the notes and homework problems.

Exam 2 Practice April 11, 2015 41 / 41


